s

Sabtu, 10 November 2012

10 BILANGAN PERTAMA

1). BILANGAN PRIMA adalah yang faktor pembaginya adalah 1 dan bilangan itu sendiri. 2 dan 3 adalah      bilangan prima. 4 bukan bilangan prima karena 4 bisa dibagi 2. Sepuluh bilangan prima yang pertama adalah 2, 3, 5, 7, 11, 13, 17, 19, 23 dan 29.

2). BILANGAN CACAH merupakan suatu bilangan bulat positif yang harus diawali dari angka 0 (nol)
hingga tak terhingga, contohnya: 0, 1, 2, 3, 4, 5,6,7,8,9,10…. Dst
3). BILANGAN ASLI adalah suatu bilangan bulat positif yamg harus diawali dari angka1 (satu) hingga
tak terhingga, contohnya: 1, 2, 3, 4, 5,6,7,8,9,10…. Dst
4). BILANGAN GENAP adalah suatu bilangan yang habis dibagi dua.
contohnya: 2,4,6,8,10,12,14,16,18,20…. Dst 
5). BILANGAN GANJIL adalah  suatu bilangan yang jika dibagi dua maka bersisa 1.
Contohnya: 1,3,5,7,9,11,13,15,17,19…. Dst
6). BILANGAN KOMPOSIT adalah suatu bilangan lebih besar dari 1 yang bukan merupakan bilangan prima. Bilangan komposit dapat dinyatakan sebagai faktorisasi bilangan bulat, atau hasil perkalian dua bilangan prima atau lebih. Sepuluh bilangan komposit yang pertama adalah 4, 6, 8, 9, 10, 12, 14, 15, 16, dan 18. Atau bisa juga disebut bilangan yang mempunyai faktor lebih dari dua. 
7). BILANGAN PERSEGI adalah banyaknya titik yang membentuk barisan persegi tersebut sama dengan cara mencari luas sebuah persegi, yaitu sisi x sisi. Maka untuk bilangan kesembilan dari pola tersebut adalah  81, didapat dari 9 x 9 = 81.
Jadi, rumus untuk mencari bilangan ke-n dari pola bilangan persegi adalah
                                          rumus bilangan persegi adalah N x N = N2
 contohnya 1, 4, 9, 16, 25, 36, 49,64,81,100 ….
8). BILANGAN SEGITIGA  adalah pola bilangan tersebut dapat disusun dari barisan bilangan berikut:
Jadi, rumus untuk mencari bilangan ke-n dari pola bilangan segitiga adalah
1/2 n(n + 1)
10 angka pertama bilangan segitiga adalah (1,3,6,10,15,21,28,36,45,55)

transformasi geometri

Transformasi adalah suatu perpindaban/perubaban.


  • TRANSLASI (Pergeseran sejajar)

    Matriks
    Perubahan
    Perubahan
    é a ù
    ë bû
    (x,y) ® (x+a, y+b)
    F(x,y) = 0 ® (x-a, y-b) = 0
    Ket :
    x' = x + a ® x = x' - a
    y' = y + b ® y = y' -b
    Sifat:

    • Dua buah translasi berturut-turut é a ù diteruskan dengan
                                                   ë b û
      dapat digantikan dengan 
      é c ù translasi tunggal é a + c ù
                                       ë d û                       ë b + d û

    • Pada suatu translasi setiap bangunnya tidak berubah.


  • REFLEKSI (Pencerminan terhadap garis)

    Pencerminan terhadap
    Matriks
    Perubahan Titik
    Perubahan fungsi
    sumbu-x
    é 1 -0 ù
    ë 0 -1 û
    (x,y) ® (x,-y)
    F(x,y) = 0 ® F(x,-y) = 0
    sumbu -y
    é -1 0 ù
    ë -0 1 û
    (x,y) ® (-x,y)
    F(x,y) = 0 ® F(-x,y) = 0
    garis y = x
    é 0 1 ù
    ë 1 0 û
    (x,y) ® (y,x)
    F(x,y) = 0 ® F(y,x) = 0
    garis y = -x
    é -0 -1 ù
    ë -1 -0 û
    (x,y) ® (-y,-x)
    F(x,y) = 0 ® F(-y,-x)= 0


    Ket. : Ciri khas suatu matriks Refleksi adalah determinannya = -1


    SIFAT-SIFAT

    1. Dua refleksi berturut-turut terhadap sebuah garis merupakan suatu identitas, artinya yang direfleksikan tidak berpindah.

    2. Pengerjaan dua refleksi terhadap dua sumbu yang sejajar, menghasilkan translasi (pergeseran) dengan sifat:
      • Jarak bangun asli dengan bangun hasil sama dengan dua kali jarak kedua sumbu pencerminan.
      • Arah translasi tegak lurus pada kedua sumbu sejajar, dari sumbu pertama ke sumbu kedua. Refleksi terhadap dua sumbu sejajar bersifat tidak komutatip.

    3. Pengerjaaan dua refleksi terhadap dua sumbu yang saling tegak lurus, menghasilkaan rotasi (pemutaran) setengah lingkaran terhadap titik potong dari kedua sumbu pencerminan. Refleksi terhadap dua sumbu yang saling tegak lures bersifat komutatif.

    4. Pengerjaan dua refleksi berurutan terhadap dua sumbu yang berpotongan akan menghasilkan rotasi (perputaran) yang bersifat:
      • Titik potong kedua sumbu pencerminan merupakan pusat perputaran.
      • Besar sudut perputaran sama dengan dua kali sudut antara kedua sumbu pencerminan.
      • Arah perputaran sama dengan arah dari sumbu pertama ke sumbu kedua.


  • ROTASI (Perputaran dengan pusat 0)

    rotasi
    matriks
    perubahan titik
    perubahan fungsi
    ½ p
    é0  -1ù
    ë1 -0 û
    (x,y) ® (-y,x)
    F(x,y) = 0 ® F(y,-x) = 0
    p
    é-1  0ù
    ë1 -1 û
    (x,y) ® (-x,-y)
    F(x,y) = 0 ® F(-x,-y) = 0
    3/2 p
    é0  -1ù
    ë-1 0 û
    (x,y) ® (y,-x)
    F(x,y) = 0 ® F(-y,x) = 0
    q
    écosq -sinq ù
    ësinq  cosq û
    (x,y) ® (x cos q - y sinq, x sin q + y cos q)
    F(x,y) = 0 ® F(x cos q + y sin q, -x sin q + y cos q) = 0

    Ket.: Ciri khas suatu matriks Rotasi adalah determinannya = 1

    SIFAT-SIFAT

    1. Dua rotasi bertumt-turut mempakan rotasi lagi dengan sudut putar dsama dengan jumlah kedua sudut putar semula.

    2. Pada suatu rotasi, setiap bangun tidak berubah bentuknya.

      Catatan:

      Pada transformasi pergeseran (translasi), pencerminan (refleksi) dan perputaran (rotasi), tampak bahwa bentuk bayangan sama dan sebangun (kongruen) dengan bentuk aslinya. Transformasi jenis ini disebut
      transformasi isometri.


  • DILATASI (Perbesaran terhadap pusat 0)

    Dilatasi
    Matriks
    Perubahan titik
    Perubahan fungsi
    (0,k)
    ék  0ù
    ë0  kû
    (x,y)®(kx,ky)
    F(x,y)=0®F(x/k,y/k)

    Ket.:

    (0, k) merupakan perbesaran atau pengecilan dengan tergantung dari nilai k.

    Jika A' adalah peta dari A, maka untuk:
    a. k > 1 ® A' terletak pada perpanjangan OA
    b. 0 < k < 1 ® A' terletak di antara O dan A
    c. k > 0 ® A' terletak pada perpanjangan AO


  • TRANSFORMASI LINIER

    Ditentukan oleh matriks
    éa  bù
                                    
    ëc  dû

    é x' ù = é a b ù é x ù
    ë y' û
       ë c d û ë y û


    é x ù =    1        é a -b ù é x' ù
    ë y û
       ad - bc     ë -c d û ë y' û 

    Perubahan Titik
    Perubahan Fungsi
    (x,y)®(ax+by, cx+dy)
    F(x,y)=0 ® édx - by , -cx + ay ù
                    ëad - bc    ad - bc û

    Prinsipnya adalah mencari matriks invers dari matriks transformasi yang diketahui.
  •  TRANSFORMASI INVERS Jika suatu transformasi diwakili oleh matriks M, memetakan titik P ke P1, maka transformasi ini memetakan P1 ke P, diwakili oleh matriks M-1 (yaitu jika M-1 ada).